Generalized Ekeland’s variational principle with applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

Variational principle for generalized Gibbsian measures

We study the thermodynamic formalism for generalized Gibbs measures, such as renormalization group transformations of Gibbs measures or joint measures of disordered spin systems. We first show existence of the relative entropy density and obtain a familiar expression in terms of entropy and relative energy for ”almost Gibbsian measures” (almost sure continuity of conditional probabilities). We ...

متن کامل

A generalized form of Ekeland’s variational principle

In this paper we prove a generalized version of the Ekeland variational principle, which is a common generalization of Zhong variational principle and Borwein Preiss Variational principle. Therefore in a particular case, from this variational principle we get a Zhong type variational principle, and a Borwein-Preiss variational principle. As a consequence, we obtain a Caristi type fixed point th...

متن کامل

Parametric Borwein-preiss Variational Principle and Applications

A parametric version of the Borwein-Preiss smooth variational principle is presented, which states that under suitable assumptions on a given convex function depending on a parameter, the minimum point of a smooth convex perturbation of it depends continuously on the parameter. Some applications are given: existence of a Nash equilibrium and a solution of a variational inequality for a system o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2019

ISSN: 1029-242X

DOI: 10.1186/s13660-019-2207-3